
THE COMPUTATION OF DYNAMICAL MODULI 

OF SOLIDS UNDER PRESSURE 

Yu. Ya. Boguslavskii, F. F. Voronov, 

and S. B. Grigor'ev 

UDC 539.89 

On the basis of the theory of finite strains, expressions are obtained in general form for the 
effective adiabatic second order elastic constants of crystals of any symmetry in terms of 
the isothermal elastic constants of second, third, and higher orders in the free energy de- 
composition. These expressions are used in the case of crystals of cubic symmetry under 
hydrostatic conditions to find the elastic wave velocities in mono- and polycrystals, and their 
pressure dependences. The polycrystal was considered as an isotropic body consisting of a 
large number of cubic monocrystals. The isotropic elastic constants were calculated from 
theoretical and experimental results for monocrystals in the Voigt--Reuss--Hill approxima- 
tion. A method of applying this approximation to thermodynamic effective second order elas- 
tic constants is proposed. The results of a computation are compared with data of experi- 
ments to measure the sound velocity in polycrystalline NaCI and CsCI specimens under 
pressures to 100 kbar. The results of this comparison are discussed. 

Investigations of the e l a s t i c  proper t ies  of solids subjected to finite s t ra ins  by dynamical  methods r e -  
sult in the determinat ion of the "effective" adiabatic elast ic  constants of a deformed mono-  or  polycrysta l .  
At the same t ime, the i so thermal  elast ic  constants of second (VPU constants),  third (TPU constants),  and 
higher  o rde r s ,  determined for the initial,  "natural ,"  state of the monocrys ta l ,  a re  known from theoret ical  
computatio ns. 

Let  us find the connection between the effective adiabatic second o rde r  elast ic  constants of a solid 
and the i so thermaI  elast ic  constants of a monocrys ta l  in general  form.  

Let us distinguish three different s ta tes :  

1) the original  natural  state cha rac te r i zed  by the coordinates a i and the density P0 in which there 
are  no s t r e s se s ;  

2) the "initial" s t ra ined equil ibrium state charac te r i zed  by the coordinates Xi and the density p*; 

3) the state "at a given t ime"  charac te r i zed  by the coordinates xi and the density p. 

The components of the displacement  vec tor  f rom the initial state into the state at a given time are  
defined by the express ions  

l~ i ~ X i - -  X i 

The connection between the mechanical  and thermodynamical  s t r e s se s  is in conformity with Mur- 
naghan [1] : 

1 Oxi Oxj 
TiJ J Oa k Oa m t~m (1) 
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H e r e  tkm a r e  the t h e r m o d y n a m i c a l  s t r e s s e s  de f ined  by  the e x p r e s s i o n s  

OU (rib.m, S) aA (q/~ra' T) p~ 
['~:m ~ Po Orl~ m , tl;m ~ PO Oq~r n ' P ~ 7 "  

w h e r e  U( v, S) and A( v, T) a r e  the i n t e r n a l  and H e l m h o l t z  f r ee  e n e r g i e s ,  r e s p e c t i v e l y ,  V i s  the s t r a i n  in  L a -  
g r a n g e  v a r i a b l e s ,  S i s  the e n t r o p y ,  T i s  the t e m p e r a t u r e ,  J i s  the J a c o b i a n  of  the t r a n s f o r m a t i o n  f r o m  the 
v a r i a b l e s  x , ,  %,  x a to the v a r i a b l e s  a l ,  a2, an. O m i t t i n g  s e c o n d  and  h i g h e r  o r d e r  t e r m s  in  the d i s p l a c e m e n t  
g r a d i e n t s  u i [2], l e t  us w r i t e  the e x p r e s s i o n  fo r  the t h e r m o d y n a m i c a l  s ~ r e s s e s  a s  t h e i r  s e r i e s  e x p a n s i o n  
n e a r  the i n i t i a l  s t a t e :  

t ~  t ~  ~- c~p~ (q .~ - -  q~,,) ~- t ~  + c "s oxj  o x ,  
= . . . . .  oo: (2) 

t [ a% 0 % ,  

A c c o r d i n g  to (1) and  (2), we ob ta in  fo r  the m e c h a n i c a l  s t r e s s  

1 0 X i  OXj tem=T~ {1-- O,q ] ., Ouj O,q ,'s (3) 
ri~ = a 0% O,= \ oX, ] + ~ " * ~  + .rj,* ~ ~ c,;,,,e.,,, 

whe r e  

t ox~ oxj .  ,~ (4) 
Ti)* = j .  0% ~ trm 

C-ij.tt, = j---g OX. O..V i OXs 0xh ,s (5) 
~ a  m Oap Oa q Oa t Cmprd 

The a s t e r i s k s  denote  q u a n t i t i e s  in the i n i t i a l  s t a t e .  

F r o m  (3) we ob ta in  the connec t i on  b e t w e e n  the s t r e s s e s  and s t r a i n s  fo r  the c a s e  of  s m a l l  a d i a b a t i c  
s t r a i n s  in  the  i n i t i a l  c o o r d i n a t e s :  

w h e r e  

{ 0Vi.i ) ., '['so 
~'~.i' = ~ , , s . = o  e., = C~,.h.,,, 

Ciz,, = - -  T.ij*6~, + 7'i:*~,,j § TjI*6., +cijSh 

(6) 

(7) 

H e n c e f o r t h ,  we s h a l l  c o n s i d e r  on ly  the c a s e  of  h o m o g e n e o u s  i n i t i a l  s t r a i n  for  which  the qua n t i t i e s  
C *'S i j f h  a r e  c o n s t a n t s .  Then ,  us ing  (6), we ob ta in  the wave  equa t ion  

02t{. 02tZ , 
S o  fh 9. ___L = =~S (8) 

, z  1 &k~ 0Xi ~X] 0Xt. ~ *8 
]~ijfh --- ~ i / [ ' ) h  ~ -~  j *  Oa m O(tj) OCtq Oa l Cmpql 

w h e r e  r i s  the t i m e .  

*S Expand ing  the e l a s t i c  c o n s t a n t s  Cmpql in (7) and (8) into s e r i e s  n e a r  the n a t u r a l  s t a t e ,  we ob ta in  

( : p /  ~S S i 0 e  qi 
Cml~ql = Cmpql i- \ - - ~ n s  / T  ~]ns + . , .  

*S w h e r e  ( O C m p q l / O % s )  T a r e  m i x e d  t h i r d  o r d e r  e l a s t i c  c o n s t a n t s  a c c o r d i n g  to the B r u g g e r  de f in i t ion  [3]. 
L e t  us  d e t e r m i n e  the e f f ec t i ve  i s o t h e r m a l  s e c o n d  o r d e r  e l a s t i c  c o n s t a n t s  fo r  which  the fo l lowing  e x p r e s -  
s i o n s  a r e  ob t a ined :  

572 



t OX i OXj OX/ OX h T T 

C *'Tij[h = - -  TiJ$6Ih ~- ris:~6hJ -~ TJIr 37 J* Oam Oap Oaq Oa l (Cmpqt %- C,mpqtns'q,,s) (9) 

in o r d e r  to c a l c u l a t e  the  d y n a m i c a l  e l a s t i c  m o d e l s  of a s o l i d  i t  i s  n e c e s s a r y  to r e l a t e  the e f f ec t ive  
i s o t h e r m  s e c o n d  o r d e r  e l a s t i c  c o n s t a n t s  to the e f f e c t i v e  a d i a b a t i c  e l a s t i c  c o n s t a n t s  of  the s a m e  o r d e r ,  
which  a r e  d e t e r m i n e d  by  (7). 

S ince  the m e c h a n i c a l  s t r e s s  t e n s o r  can  be  r e p r e s e n t e d  by func t ions  of  the f o r m  

7'~ = I '~ 0l, e, T (q, e, S)} 

w h e r e  n i s  the f in i te  s t r a i n  and e is  an i n f i n i t e s i m a l  s t r a i n  p r o d u c e d  by  a sound  w a v e ,  then  the e f f ec t i ve  
a d i a b a t i c  s e c o n d  o r d e r  e l a s t i c  c o n s t a n t  i s  

( 

*'T t OXi OXj T~,c~rn~.H~ *'T t OX i OXj T~;n *T ~ *T Ckmpn ~p'n" Cp'W]h 
= C~]~h + j ,  Oae. aa,.,,, or, C . ~  = C~j/h i j .  Oa~ Oa m p~C.~* 

*T 
~iJ = O'vwCvwi~ 

Expand ing  ~ j  in  a s e r i e s  n e a r  the  n a t u r a l  s t a t e ,  we ob ta in  

H e r e  

~iJ = h..,(O) + \ o-y~,/:r,~=o q,,-,,,, 

,,, T { o s  c T 

P e r f o r m i n g  an  a n a l o g o u s  e x p a n s i o n ,  we have  

T {'9;h.~ 1 

w h e r e  Svwzy a r e  the i s o t h e r m a l  s e c o n d  o r d e r  e l a s t i c  y i e l d ,  ~vw = (OVvw/0T) t  a r e  the l i n e a r  c o e f f i c i e n t s  
of  t h e r m a l  e x p a n s i o n ,  CV the s p e c i f i c  h e a t  fo r  c o n s t a n t  v o l u m e .  

The r e  f o r e  

c'i~.,sh = - T~j~,. + T.~,,.j + T.:J.., + (i0) 

1 OXi OXj OX f OX a T T i OXi OXj Ta;n  *T * * ckm~nap, n, CpT" n, lh 
J j .  Oa m Oat,  ~ Oa t (Cmpql-~ Cmpql.,aaq,~,)4 j .  Oar Oa m poC*t 

This  e x p r e s s i o n  r e l a t e s  the e f f e c t i v e  a d i a b a t i c  s e c o n d  o r d e r  e l a s t i c  c o n s t a n t s  to the  i s o t h e r m a l  
s e c o n d  and t h i r d  o r d e r  e l a s t i c  c o n s t a n t s  of a s o l i d  in  the o r i g i n a l  s t a t e  and i s  v a l i d  fo r  an a r b i t r a r y  k ind  of  
f in i te  s t r a i n  and c r y s t a l s  of a l l  s y m m e t r y  c l a s s e s .  

F o r  the c a s e  of m u l t i l a t e r a l  c o m p r e s s i o n ,  high h y d r o s t a t i c  p r e s s u r e ,  th is  e x p r e s s i o n  s i m p l i f i e s .  

In th is  c a s e  

ox. 
T{j = - -  6{jP, rhj = rl6{.~, < = (1 + 2TI)'/'6im (11) 

Us ing  (5), (7), (1 i ) ,  we have  fo r  the e f f ec t i ve  s e c o n d  o r d e r  e l a s t i c  c o n s t a n t  

C~j~h = P (6ii6sh - -  6is6hj 6j,6~h ) + (1 + 2~1)v2 *s - -  C{# h 

c~j~, = c~i~ + \ o-o-~,~ )T  ~'~ ~- . . . .  ~Z~ + r ~ , ~ . ~  + . . .  

w h e r e  F i j f h n n  a r e  c o m b i n a t i o n s  of  m i x e d  t h i r d  o r d e r  e l a s t i c  c o n s t a n t s  

( P = - -  ~1 (t + 2rl)-'/, \-~-- C~pp + q 

(12) 

(13) 
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and finally 

C~Sth , T T �9 ,~ = P 18~8~h --  5~,~ --  ~ 8 ~ )  + (t po (1 + 2~l)'hC~ * 
(14) 

which is valid for c ry s t a l s  of a r b i t r a r y  s y m m e t r y .  

The express ions  (10) and (14) can natura l ly  be used to compute the effect ive e las t ic  constants  of poly- 
c ry s t a l s  under a r b i t r a r y  deformat ions  by s ta r t ing  f r o m  the i so the rma l  second and third o rde r  e las t ic  con- 
s tan ts  of a po lycrys ta l  in the or iginal  s ta te .  

However ,  in o rde r  to obtain the effect ive e las t ic  constants  of po lycrys ta l s  by using the r e su l t s  of 
theore t ica l  computat ions [4-8] for  monoc rys t a l s ,  i t  is n e c e s s a r y  to c a r r y  out a s epa ra t e  averaging  of the 
i s o t h e r m a l  second and third o rde r  e las t ic  constants .  

Averaging according  to Voigt--l~euss--Hill (VRH approximation)  [9] can be used for this purpose .  
Thus we can wri te  for  the second and third o rde r  e las t ic  constants  

H = I ,  , . ,V R cijla /2 tt, lj~t q- C~jki) 
H 1 V C R 

H H 
where  Cijkl and Cijklmn are  the i so the rma l  second and third o rde r  e las t ic  constants  for a po lycrys ta l  
averaged  according to VRH, and Ci~k/, V R k R Cijklmn and C l '  Cijk/mn are  the Voight [10] and Reuss  [11] ave r -  
ages ,  r e spec t ive ly .  

The following express ions  [12]: 

R R (a~,.8~. + a i .6 : , . )  Ci jk lSk lmn ~ 1/'2 
R R R o R  

C,~k lm n ~ - -  gijpqC~lrsCmrtuvOpq~.suv 

(15) 

R R are  valid in the case  of Reuss averaging,  where s klmn, S pqrsuv are  the second and thi rd  o rde r  yield modu- 
li ,  r e spec t ive ly .  The preceding express ions  a re  also valid for monocrys t a l s .  

Thus,  in the case  of mul t i l a te ra l  compres s ion  of po lyc rys ta l s  consis t ing of monocrys t a l s  of cubic 
s y m m e t r y ,  the adiabatic second o r d e r  e las t ic  constants  obtained f rom data on the sound veloci t ies  under 
high p r e s s u r e  will equal for  po lyc rys ta l s  

v'~P~ K s + + G  = (cn r)  ~- <C~S> = <BS~> = (l § 2~)v, 

+ q (2 <cnT> ~- 2 <cl2T> A- (CmT> -4- 2 <Cn2T>) + T <s 2 
p0 (1 q- 2q)'L'C*~ 

~)t2pn 
<C~ s > = <B~4> - -  (i + 2n)'/~ = G ---- <cJ> § 

+ '1 (<cnT> + 2 <c~2T> + <c,,T> + <cT4> + 2 <C~e>) 

(16) 

where  K, G a re  the volume e las t i c i ty  and shea r  moduli,  v I and v t a re  the longitudinal and t r a n s v e r s e  sound 
ve loc i t ies .  The sign ( ) shows that the quanti t ies have been averaged  and r e f e r  to po lyc rys ta l s .  

In conformi ty  with (10) we have for  the p r e s s u r e  

P = --  ,1 (t + 2~l)-'h [<cnT> + 2 <cI~T> + ~ (1/2 <C~> + 3 <cT2> + <cTa>)] (17) 

~l = --  P (<cnT> + 2 <cloT>)-1+ P~ [<CnT> + 2 <CJ>- -  

--  (~s <cTI> + 3 <cT2> § <C~23>)1 (<cnT> -k 2 <c~2T>) -a (18) 

Let  us show that  we can a r r i v e  at  the s ame  averaging  r e s u l t s b y  another  m e a n s , w h i c h i s  s u b s t a n t i a l l y  
s h o r t e r  in the case of c ry s t a l s  of  cubic s y m m e t r y .  This means  is the d i rec t  averaging  of the effect ive 
the rmodynamic  second o rde r  e las t ic  constants  for  a monocrys t a l  by the VRH approximat ion  scheme .  

We have f rom expres s ions  of type (2) 

Ot~m O~pQ , 
O~pq Ot~m ~ C~mPqSpqk'm' ~ ~kk'Smm" 
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O J: O X  t 
~ P q -  Oap Oaq est 

CfM~m : gfhk'm'Cl~mpqSk'm'pq (19) 

Expanding this expression in a series near the natural state, we obtain 

which is analogous to (15). 

Cfhkm ~ C]hk,m,Ckmpc~SR,rn, pq 

Clhkmwv ~ - -  C/hk,m,Cs 

In the case  of  p o l y c r y s t a l s  we obtain s i m i l a r l y  to the p r eced ing  

Averaging by the VRH approximation scheme yields 

< , % , , + > = ' / + ( d L + +  + ~ +R +R , -~ CfhMm,CkmpqSk,m,pq ) 

Expanding (Cfhkm> n e a r  the na tu ra l  s ta te ,  we have  

Cons ide r ing  the p o l y c r y s t a l s  (Cfhkm) and {Cfhkmvw> as means  in the VRH approx imat ion ,  we a r r i v e  
at  the e x p r e s s i o n s  

v (2o) 
qcn,~,++> = /~. (Clh,+,, t- ci~.,,) 

1 V R R R R 
( C/hl~mt'+~> : /2 (Cfh,'mvm - -  Cfh~'m'CkvnpqCt'wstSR'm'qst) 

which are analogous to (15). Therefore, averaging the second and third order elastic constants ({Cfhkm), 
(Cfhkmvw)) by the VRH approximation scheme in the calculation of the dynamic moduli of a polycrystal 
from the elastic constants of a monocrystal is equivalent to averaging the effective thermodynamic second 

e* order elastic constants { fhkm}" 
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TABLE 1 

NaCl 

Author 

CsCl 

Nran' yan 1~] 

3hate [el 

Lincoln 
et. aL [~ 

Lincoln. 
et, al. 1~1 

Paul [81 

Nran' yan is] 

Ghate [~] 

Ghate I~l 

c~ 

o .> 
D 

o 

0.333 - -  

0 . 2 8 8  - -  

0 . 3 t 7  q- 

0.317 + 

O. 322 q- 

0.333 - -  

O .  2 5 6  - -  

0 . 3 3 3  -- 

Repulsive force 

12rid neighb0rs] ~ 

fTj 
I 

§ + - 

+ + 

+ 

2 C - -  - -  

Agreement with 
e x p  e r l m e n t  

v l (P) v t (P)' 

Poor Poor 

Good Good 

Good Good 

"Poor I Satis. 

Satis. Poor 

Poor I Poor 
I 

Good Good 

Poor Poor 

Re mark:  
'%") taken into account 
" -")  not taken into account. 

However, in the general  case it is necessa ry  to know the relation Vi' = Vi ~ (Tij); i .e. ,  it is neces sa ry  
�9 J J $ 

to average the second, third, etc. o rder  elast ic  constants m order  to calculate (Cfhkm>. According to (13), 
for cubic monocrys ta ls  under hydrosta t ic  compress ion  conditions the relation ~?ij = ~ij(Tij) is 

T 2q2 n = - P ( G  + 2G)  -1 + P~ tc,~ ' T .  ( , / 2 c ~  § 3c~2 + c~3)J 
(cut q- 2q2r)~ 

It iS known [13] that in this case the combinations of e last ic  constants of a monocrys ta l  c T + 2c T, 
~2cT1 + 3 c T 2 +  T Cn3 agree with their  means in the VRH approximation in (18). This permits  averaging the 
elast ic constants of only second order  (C*fhkm), which resul ts  in an abrupt cutoff in the calculations and 
affords the possibility of determining thea-'polycrystalline dynamic moduli by means of the values of the ef- 
fective thermodynamic elast ic  constants Cl1" ,s, C44.,s, known f rom experiment ,  for  a cubic monocrys ta l  
under hydrostat ic  compress ion  conditions in the (001) and (110) di rect ions .  

Using the expressions obtained, we averaged the second and third o rde r  elast ic  constants determined 
experimental ly  for the monocrys ta l s  CsC1 [14] and NaC1 [15], and the p ressure  dependences of the propaga- 
tion velocit ies for the longitudinal Vl and t ransverse  v t elast ic  waves were computed f rom (16), (18) in poly- 
c rys ta ls  of these mater ia l s .  

These dependences (curves 2) are represented  in Fig. 1 (for NaC1) and Fig. 2 (for CsC1) as compared 
with the analogous dependences for polycrystal l ine NaC1 and CsC1 specimens obtained experimental ly  by 
the authors ([15], curve 1). 

The discrepancy for these dependences, the experimental  for the polyerysta ls  (curve 1) and that ob -  
tained by averaging f rom experiments  on monocrysta ls  (curve 2), does not exceed 3-4% for both NaC1 and 
CsC1, which corresponds  to the existing accuracy  in determining the third o rder  elast ic constants and shows 
that the e r r o r  of the averaging ca r r i ed  out is apparently less than the mentioned discrepancy.  

Moreover ,  the p res su re  dependences of the propagation velocit ies of longitudinal and t r ansve r se  waves 
for NaC1 and CsC1 polycrystals  obtained by averaging the theoret ical ly  computed second and third o rde r  
elast ic constants are  presented on these same figures.  

Curve 3 in Fig. 1 is constructed f rom data in Nran'yan [4], curve 4 f rom Ghate [6], curves  5 and 6 
f rom Lincoln et  al. [7], and curve 7 f rom Paul [9]. 

Curve 3 in Fig. 2 is constructed f rom data in Nran 'yan [4] and curve 5 f rom Ghate [6]�9 It should De 
noted that the tempera ture  dependence of the elast ic  constants in [7] was computed by two methods. This 
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resul ts  in the appearance of two sets of third o rder  elast ic  constants (for T = 298~ and, correspondingly,  
two dependences v(P) (curves 5 and 6). 

The calculation of the third o rde r  elast ic  constants in the theoret ical  papers used [4-8,  17] was based 
on the central  forces  model with a ]3orn--Meyer type potential in which the repulsion because of overlapping 
of the e lec t ron shells of the ions is 

~ B exp (r/e) 

where B and e are the repulsion parameters (5 is a "stiffness" coefficient). 

The fundamental characteristics of the potentials [4-8] are presented in Table i, where,taking ac- 
count of the van der Waal's attraction, the second neighbors, and the three-particle interaction are noted. 
Estimates of the agreement with experiment are presented in the last columns of the table. The agreement 
is hence considered "good" if the computed theoretical dependence v(P) lies in the domain between curves 
1 and 2 (Figs. 1 and 2) obtained from experiment, "satisfactory" if the deviation from the domain of curves 
1-2 does not exceed the possible errors in the experiment, and "poor" if the dependence lies outside the 
mentioned region beyond the possible limits of the experimental errors. All the computations for v(P) were 
carried out to 50 kbar pressures for CsCI and 70 kbar for NaCl,since it is required to take account of the 
fourth and higher order elastic constants above these pressures for these materials [18]. 

The analysis of the computational results (Figs. 1 and 2 and the table) showed the essential influence 
of the nature of taking account of the instantaneous forces in the crystal on the third order elastic constants 
and, correspondingly, on the effective elastic constants and pressure dependences of the elastic wave pro- 

pagation velocities. 

The best results are obtained by taking account of the second neighbors and using the repulsion param- 

eter and lattice constant determined at T = 298~ and P = 0. 

Taking account of three-particle interaction in the lattice potential plays a minor part. 
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