THE COMPUTATION OF DYNAMICAL MODULI
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On the basis of the theory of finite strains, expressions are obtained in general form for the
effective adiabatic second order elastic constants of crystals of any symmetry in terms of
the isothermal elastic constants of second, third, and higher orders in the free energy de-
composition. These expressions are used in the case of crystals of cubic symmetry under
hydrostatic conditions to find the elastic wave velocities in mono- and polycrystals, and their
pressure dependences. The polycrystal was considered as an isotropic body consisting of a
large number of cubic monocrystals. The isotropic elastic constants were calculated from
theoretical and experimental results for monoecrystals in the Voigt—Reuss—Hill approxima-
tion. A method of applying this approximation to thermodynamic effective second order elas-
tic constants is proposed. The results of a computation are compared with data of experi-
ments to measure the sound velocity in polycrystalline NaCl and CsCl specimens under
pressures to 100 kbar. The results of this comparison are discussed.

Investigations of the elastic properties of solids subjected to finite strains by dynamical methods re-
sult in the determination of the "effective" adiabatic elastic constants of a deformed mono- or polycrystal.
At the samie time, the isothermal elastic constants of second (VPU constants), third (TPU constants), and
higher orders, determined for the initial, "natural,” state of the monocrystal, are known from theoretical
computations.

Let us find the connection between the effective adiabatic second order elastic constants of a solid
and the isothermal elastic constants of a monocrystal in general form. :

Let us distinguish three different states:

1) the original natural state characterized by the coordinates ¢ and the density p, in which there
are no stresses;

2) the "initial" strained equilibrium state characterized by the coordinates Xj and the density p*;
3) the state "at a given time" characterized by the coordinates x;j and the density p.

The components of the displacement vector from the initial state into the state at a given time are
defined by the expressions

ui:xi—Xl‘

The connection between the mechanical and thermodynamical stresses is in conformity with Mur-
naghan {1]: '
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Here tgr,; are the thermodynamical stresses defined by the expressions
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where Uy, 8) and A(n, T) are the internal and Helmholtz free energies, respectively, n is the strain in La-~
grange variables, S is the entropy, T is the temperature, J is the Jacobian of the transformation from the
variables xy, x,, X3 to the variables gy, a3, a3- Omitting second and higher order terms in the displacement
gradients uj [2], let us write the expression for the thermodynamical stresses as their series expansion
near the initial state:

9X, 98X,

bim = tl;’m = C::impn(rlrm"‘ Y]1'11:) S =t Crimpn o TE e Cth (2)
D n

P Ou A
e, - ax,)

According to (1) and (2), we obtain for the mechanical stress
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The asterisks denote quantities in the initial state.

From (3) we obtain the connection between the stresses and strains for the case of small adiabatic
strains in the initial coordinates:
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Henceforth, we shall consider only the case of homogeneous initial strain for which the quantities
CX'S are constants. Then, using (6), we obtain the wave equation

ijifh
ot s P (8)
P"Tga T DUty oy,
3
B sy L 0K @Y, 0X, aX, .
fh = Vift il 7T TR da,, da, da, da, mpql

where 7 is the time.
Expanding the elastic constants c;knqul in (7) and (8) into series near the natural state, we obtain
968
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where (ac;lqul/annS)T are mixed third order elastic constants according to the Brugger definition [3].

Let us determine the effective isothermal second order elastic constants for which the following expres-
sions are obtained:
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In order to calculate the dynamical elastic models of a solid it is necessary to relate the effective
isotherm second order elastic constants to the effective adiabatic elastic constants of the same order,
which are determined by (7).

Since the mechanical stress tensor can be represented by functions of the form
Tii == Tij {ﬂ’ €, T (7], €, S)}

where 7 is the finite strain and e is an infinitesimal strain produced by a sound wave, then the effective
adiabatic second order elastic constant is
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Expanding }‘ij in a series near the natural state, we obtain
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Performing an analogous expansion, we have
T [ Ohj;
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where Syyzy are the isothermal second order elastic yield, ayw = (87yy/9T)¢ are the linear coefficients
of thermal expansion, C,7 the specific heat for constant volume.

Therefore
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This expression relates the effective adiabatic second order elastic constants to the isothermal
second and third order elastic constants of a solid in the original state and is valid for an arbitrary kind of
finite strain and crystals of all symmetry classes.

For the case of multilateral compression, high hydrostatic pressure, this expression simplifies.

In this case
ax, )
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Using (5), (7), (11), we have for the effective second order elastic constant
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where rijfhnn are combinations of mixed third order elastic constants
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and finally
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which is valid for crystals of arbitrary symmetry.

The expressions (10) and (14) can naturally be used to compute the effective elastic constants of poly-
crystals under arbitrary deformations by starting from the isothermal second and third order elastic con-
stants of a polycrystal in the original state.

However, in order to obtain the effective elastic constants of polycrystals by using the results of
theoretical computations {4 8] for monocrystals, it is necessary to carry out a separate averaging of the
isothermal second and third order elastic constants.

Averaging according to Voigt—Reuss—Hill (VRH approximation) [9] can be used for this purpose.
Thus we can write for the second and third order elastic constants
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where C1 ik and C1 kimn are the 1sotherma1 second and third order elastic constants for a polycrystal
veraged accordmg to VRH, and cukl’ and Cll}kl, are the Voight [10] and Reuss [11] aver-
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The following expressions [12]:
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are valid in the case of Reuss averaging, where SEl‘mn’ Slgqrsuv are the second and third order yield modu-
1i, respectively. The preceding expressions are also valid for monocrystals.

Thus, in the case of multilateral compression of polycrystals consisting of monocrystals of cubic
symmetry, the adiabatic second order elastic constants obtained from data on the sound velocities under
high pressure will equal for polycrystals
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where K, G are the volume elasticity and shear mbduli, vy and v¢ are the longitudinal and transverse sound
velocities. The sign (¢ ) shows that the quantities have been averaged and refer to polycrystals.

In conformity with (10) we have for the pressure
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Let us show that we can arrive at the same averaging results by another means, which is substantially
shorter in the case of crystals of cubic symmetry. This means is the direct averaging of the effective
thermodynamic second order elastic constants for a monocrystal by the VRH approximation scheme.

We have from expressions of type (2)
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Expanding this expression in a series near the natural state, we obtain

Cinkm == Cing'm'ChmpeSk’m’ pa
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which is analogous to (15). In the case of polycrystals we obtain similarly to the preceding
CChakm = Cfnrm> (Compad {Skmpad
Averaging by the VRH approximation scheme yields
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Expanding <°;hkm> near the natural state, we have
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Considering the polycrystals (¢mim) and (Cfhkmyw) as means in the VRH approximation, we arrive
at the expressions
20)
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which are analogous to(15). Therefore, averaging the second and third order elastic constants ((c fhkm>’
{c fhkmvw>) by the VRH approximation scheme in the calculation of the dynamic moduli of a polycrystal
from the elastic constants of a monocrystal is equivalent to averaging the effective thermodynamic second
order elastic constants <°}khkm>'

575



TABLE 1

. Agreement with
- “g Repulsive force experiment
%’ E :§ g 2nd neighbors %
= Author 3 =2 g2 |- d,8 4B 8
Ag qr:) ) 8 o0 g-?;bu.' 3 & ' g_' 8 v, (P) v; (PY
g B SE| L BESOER g e g
5 ., 4 - [T
2 S| o |SS| B p3secygis
[y - = .
Nran'yan [* 3 1033 — + - —_ -— Poor Poor
Ghate [°] 4 0,288 — + + - — Good Good
Na(l {Lincoln. 5 0317 -+ - — + - Good Good
et. al, ['}]
Lincoln. 6 0.317 + -+ — + — | "Poor Satis.
et, al. |’}
Paul [?] 7 10,3220 4 -+ — — + Satis, | Poor
Nran'yan [*) { 3 10.333 — + — —_ — Poor Poor
CsCl [Ghate [6] 4 0.256) — -+ 4+ — —_ Good Good
Ghate [®] 5 0.333] — + -+ — — Poor Poor
Remark:

" " taken into account
"—" not taken into account.

However, in the general case it is necessary to know the relation 7;, = nij (Tyj ); i.e., it is necessary
to average the second, third, etc. order elastic constants in order to calculate {c fhkm> According to (13),
for cubic monocrystals under hydrostatic compression conditions the relation nij 771](T1]) is

ey + 2cl —( /’Cm T 30?12 + C123)]

= — P el + 2ch)yt 4 P2
| C12 ) - (011 T 201211)3

It is known [13] that in this case the combinations of elastic constants of a monocrystal cn + 2c£,
/2C;I111 +3Cjio+ C;12‘3 agree with their means in the VRH approximation in (18). This permits averaging the
elastic constants of only second order (c hkm)’ which results in an abrupt cutoff in the calculations and
affords the possibility of determining the  polycrystalline dynamic moduli by means of the values of the ef-
fective thermodynamic elastic constants Cyy* '8, Cy*'S, known from experiment, for a cubic monoerystal
under hydrostatic compression conditions in the (001) and (110) directions.

Using the expressions obtained, we averaged the second and third order elastic constants determined
experimentally for the monocrystals CsCl [14] and NaCl [15], and the pressure dependences of the propaga-
tion velocities for the longitudinal v; and transverse v elastic waves were computed from (16), (18) in poly-
crystals of these materials.

These dependences (curves 2) are represented in Fig. 1 (for NaCl) and Fig. 2 (for CsCl) as compared
with the analogous dependences for polycrystalline NaCl and CsCl specimens obtained experimentally by
the authors ({15], curve 1).

The discrepancy for these dependences, the experimental for the polycrystals (curve 1) and that ob~-
tained by averaging from experiments on monocrystals {curve 2), does not exceed 3-4% for both NaCl and
CsCl, which corresponds to the existing accuracy in determining the third order elastic constants and shows
that the error of the averaging carried out is apparently less than the mentioned discrepancy.

Moreover, the pressure dependences of the propagation velocities of longitudinal and transverse waves
for NaCl and CsCl polycrystals obtained by averaging the theoretically computed second and third order
elastic constants are presented on these same figures.

Curve 3 in Fig. 1 is constructed from data in Nran'yan [4], curve 4 from Ghate [6}, curves 5 and 6
from Lincoln et al. [7], and curve 7 from Paul [9].

Curve 3 in Fig. 2 is constructed from data in Nran'yan [4] and curve 5 from Ghate [6]. It should pe
noted that the temperature dependence of the elastic constants in [7] was computed by two methods. This
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results in the appearance of two sets of third order elastic constants (for T = 298°K) and, correspondingly,
two dependences v(P) (curves 5 and 6).

The calculation of the third order elastic constants in the theoretical papers used [4-8, 17] was based
on the central forces model with a Born—Meyer type potential in which the repulsion because of overlapping
of the electron shells of the ions is

¢ = B exp (r/e)

where B and ¢ are the repulsion parameters (¢ is a "stiffness™ coefficient).

The fundamental characteristics of the potentials [4-8] are presented in Table 1, where,taking ac-
count of the van der Waal's attraction, the second neighbors, and the three-particle interaction are noted.
Estimates of the agreement with experiment are presented in the last columns of the table. The agreement
is hence considered "good" if the computed theoretical dependence v(P) lies in the domain between curves
1 and 2 (Figs. 1 and 2) obtained from experiment, "satisfactory" if the deviation from the domain of curves
1-2 does not exceed the possible errors in the experiment, and "poor" if the dependence lies outside the
mentioned region beyond the possible limits of the experimental errors. All the computations for v(P) were
carried out to 50 kbar pressures for CsCl and 70 kbar for NaCl,since it is required to take account of the
fourth and higher order elastic constants above these pressures for these materials [18].

The analysis of the computational results (Figs. 1 and 2 and the table) showed the essential influence
of the nature of taking account of the instantaneous forces in the crystal on the third order elastic constants
and, correspondingly, on the effective elastic constants and pressure dependences of the elastic wave pro-
pagation velocities.

The best results are obtained by taking account of the second neighbors and using the repulsion param-
eter and lattice constant determined at T = 298°K and P = 0. ‘

Taking account of three-particle interaction in the lattice potential plays a minor part.
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